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Evaluation

This effort was a study to investigate, theoretically
and experimen.ally, the possibility of Burst Communication
by radio transmission from an antenna buried for conceal-
ment. Low transmitter power, 1 watt, maximum antenna
width of 5 inches and VHF frequency were major parameters.
The emphasis was on antenna design and not communications
system design. The results of the study indicate theoreti-
cally useful ground to airborne communications.

In view of the theoretical and experimental feasibility
indicatedan expansion of the effort is recommended. It
should include further experimentation and fliqht testing
to explore the more practical aspects of adapting the
experimental antennas to existing buried transmit devices.
An experimental buried antenna/transmit combination unit
should be constructed for this purpose.
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1. INTRODUCTION

The objective of this effort is to provide engineering

services to study the feasibility and practicality of low power

radio frequency transmissions from antennas chat are buried
just below the surfbce of the earth. Burial is for concealmnt

only.
The main purpose is to predict the communications range

to ai! assumed receiver from a buried transmitting antenna. I

doing this the theory of buried antennas, which is available in
the literature, is outlined; experiments were performed to con-
firm the theory; and small resonant antennas f)r burial were
developed and tested. Construction details are given foi some

candidate antennas.
Compromises and trade-offs are described for various types

of antennas, e.g., vertical and horizontal lipeles. The main

factor in the research is the requirement of a small antenna to
allow convenient burial deployment. This requirement vas ac-

complished by the use of resonant antennas at the assigned fre-
quency, 145 MHz.

The theory of emission from a buried source to the air space

is discussed in section 2. The general properties of resonant

antennas are described in section 3. The effects of burial on
impedance, bandwidth, efficiency, and pattern are described in

section 4, and a series of candidate antennas is described.

Experimental results for the candidates are given in section 5.
The maximum communication range is predicted in section 6.

J
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2. THEORETICAL FIELD CALCULATIONS

A. INTRODUCTION

A theoretical discussion of the effect of burial in the

ground on antenna performance consists of three main aspects:
one aspect is the change of the efficiency of the antenna; the
second aspect is the exact field pattern calculation; and the

third aspect is the change in impedance, and especially the change

in the resonant frequency of resonant antennas. The determination

of efficiency of buried antennas by theoretical methods has been

done only for certain antennas, e.g., for a spherical dipole [I].

Theoretical work on efficiency was not done in the present con-

tract. Experimental determinations of efficiency are discussed

in a later section.

The field at a receiving point in the air may be compared

to that from a monopole set on the ground at the place where the
radiation emerges from the buried antenna. This method makes it

clear how much loss arises from the burial. A more rigorous
method is to state the loss relative to an isotropic source.
This method shows the total effect of the burial and the propa-

gation. Both presentations will be used.

B. GAIN PATTERN IN AIR OF A BURIED DIPOLE

The field in the air space is greatly influenced by the
burial. The notation TM and TE waves will be used to denote*

the wave components with horizontal magnetic vector and hori-
zontal electric vector respectively. Table 1 indicates some
characteristics of the waves from buried dipoles and from a
reference quarter wavelength monopole set on the earth. The
latter is a useful basis for comparison. It has approximately

-3 dB gain with respect to isotropic at 100 elevation angle.

*Another notation for TM and TE is vertically and horizontally
polarized respectively.

2



Dipole antennas, including a small loop which is a magnetic

dipole, are considered almost exclusively. The following nota-

tion will be used:

VED, vertical electric dipole;

VMD, vertical magnetic dipole;

RED, horizontal electric dipole;

HMD, horizontal magnetic dipole.

A buried vertical dipole gives a weaker field throughout the

air space than does a buried horizontal dipole, other things

being equal, and the dielectric constant, e', of the ground being

greater than 2, which is almost always the case. This is due to

the cone of emission from the ground into the air space (fig. I).

For e' = 6 the cone angular radius is 240. The vertical dipoles

give no emission straight up and at 240 the underground pattern

factor of the dipole is 8 dB weaker than the msximum, which

occurs in the broadside direction.

The buried horizontal dipole sends maximum energy straight

up. The horizontally traveling surface wave is emitted at

240 from maximum of the dipole, for both the TE and TM polari-

zations, causing at most 0.7 dB loss due to the underground

pattern factor of the dipole at 24* from broadside, c being 6.

For any antenna system the field strength decreases at low

elevation angles, as indicated in table 1. At low angles the

buried antenna exhibits an approximately constant loss compared

to an antenna on the surface, see last line of table I. This

extra loss due to burial is explained in sections C and D below.

The loss is about 30 dB for TM wave and 40 dB for TE waves at

10 elevation angle, el being 6. The TM wave is almost always

stronger than the T3 wave and is therefore more useful. Also

it gives a ground wave, useful for nearby on-the-ground

reception.

Power gain is defined in the footnote of table 1.

3



Table 1. Fields of a monopole, and various dipoles buried in

earth, with dielectric constant = 6 and conductivity = 0.003 S/m,

stated relative to an isotropic emitter. Depth is assumed zero.

The eighth line shows the depth attenuation per meter.

TM/TE Power Gain (a)

Antenna Character 100 Elevation 10 Elevation 20 Elevation

A/4 monopole TM ' -3 dB " -18 dB " -14 dB
with X/2 radius
metal ground
plane

Buried VED TM -21.8 dB -38.7 dB -33.0 dB

Buried IN'D TE -25.9 dB -46.1 dB -40.2 dB

Buried HED T -14.6 dB -31.7 dB -26.1 dB

TE -19.0 dB -38.3 dB " -32.6 dB

Buried HMD TM -13.8 dB -30.9 dB -25.4 dB

TE -19.8 dB -39.1 dB -33.3 dB

1 meter depth TE,TM -2.19 dB -2.20 dB - 2.20 dB
absorption

Buried HED re- TM -11.6 dB -13.7 dB -12.1 dB
lative to
surface
monopole

(a) The power gain of an antenna at any angle is the ratio of
the power density observed to the theoretical power density
that would have been furnished by an isotropic emitter in
free space at the same distance.

4
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AIR I=9I

ILO 8 TOTALLY REFLECTED
E EARTH

POINT SOURCE()

d6

Figure 1, a. Rays at critical angle; b. divergence.*

*Lonig captions for all figures are given in the "List of Figures". T1he caption
accompanying each figure wil2 usually be abbreviated.
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C. THEORETICAL DERIVATION OF THE PATTERN GAIN

A convenient summary of buried antenna theory Is that of

Hufford [1]. Earlier results include [2], [3], [4]. The

Sommerfeld method for a dipole in a half space is used. The

final results are given below. The notation is as follows:

c0, is0 are the constitutive parameters of free space.

In the ground pl = 110" and the complex refractive index,

n, is given by

n 2 = e1/ o = e' + i 0/(Wc0 ); also c* = elie0 .
a = conductivity, S/m.

ko0 = L(P 0 E0) z0 =/i j'
kI = nk0 , Z1 = Z0/n,

sin 61 = sin 8/n (complex Snell's law),

cos 01 = (n2-sin26)h/n,

loss tangent = e"/e' = a/(cle 0w), w = 21Tf.

A ray at the critical angle of incidenice in the ground, ec,
emerges horizontally with sin G = 1 in the air, figure la, thus

sin 6 = 1/n, cos 0 = (n?-1)h/n.

The equations for the far fields in the air at a height

greater than a few wavelengths, due to dipoles buried in a flat

earth (half space), for IF and TM waves respectively, are stated

relative to the field of an isotropic emitter in free space as

follows [1]:
Ee/E =L C D A

Em/Ef = L Cm D A

L = 2/(Re n)1

D = exp (i k h(n cos 0-Cos O))
0

Ce = cos 6/(cos Ol +Cos 0)
Cm = Cos O/(cos el0n cos 0),

where

6



A = 0, VEDe

Am = -i(3/2)h sin 0., VED (2)

Ae = i(3/2)h cos €, HED

A = i(3/2) cos e sin , HED (3)

Ae = i n/Inj x (3/2)h sin 0l, VMD

Am =0, WID (4)

Ae = -i n/Inm x (3/2)! cos 01 sin € HMD

Am = i n/Inj x (3/2)! cos ', HMD (5)

= the azimuth angle measured from an axis that

is perpendicular to the horizontal dipoles.

Equations (2) to (5) are equations (7.18), (7.19), (7.23),

and (7.24) of [1]. The p. oduct LCD of equation (1) would be

used for a buried isotropic point source. The factor A repre-

sents the effects of coupling the dipole pattern to the angular
cone of emission. The field Ef of an isotrop-c emitter of power
W watts in free space is

Ef = (W Z0 /47rR 2 ) V/m, rms

= (30 W)h/R. (6)

The range R is measured in meters.

The simplicity and utilit, of Hufford's normalization (to

an isotropic source) should be noted. Many of the theoretical

formulations give the field pattern for a dipole with a speci-
fied current or L specified dipole moment, which leves the reader
with some work. to do, to find the current or moment from the
power. By the present method [1] from W and R, the E field of

an isotropic source is found from equation (6), assuming 100 per-
cent efficiency. Then one applies the gain pattorn of the buried

source, equations (l)-(5), aad get-s the predicted field in the air.

7



The predicted ground wave is found in the same way using

equations (18)-(20), section E, below.

D. PHY ,.CAL OPTICS OF BURIED ANTENNAS, [9]

It is instructive to try to obtain the transmitted far

field based on physical optics. There are three main steps:

one step is to find the power transmission factor of the inter-

face using plane wave concepts; a second step is to obtain the

change in the spierical wave divergence factor at the interface,

considering the point source aspects; and the third step is to

calculate the absorption in the ground.

The interface transmission coefficient may be found from

Fresnel's equations and conservation of energy. The refrac-

tive index is temporarily assumed to be real, and losses are

added later. The power transmission coefficients for a plane

wave in the dense medium refracted into the vacuum (air) are:

2  4n cos O 1 cos 0T2 =1 (7)
e (n cos 01+cos 0)2'

2 4n cos o1 cos 0
T= , (8)

(cos O1 +n cos 0)2 -

where e and m denote TE and TM waves respectively. These are

obtained from Fresnel's field equation, section 9.5 of [5].

taking into account changes of the impedance and the area of

a beam at an interface.

Considering the spherical wave from an elementary doublet

as a bundle of rays we find the change in the solid angle due

to refraction into the air space, figure 1. The spherical

angles are

dl I = sin 0 1 dOld l, in the earth

dQ = sin OdOdo, in the air. (9)

8



It is true that

d =- do. (10)

From Snell's law

sin 0 = n sin 01, (11)

and by differentials

cos 8dO = n cos 1do1 . (12)

Using equation (10) and equation (12) in equation (9) we have

dQ = sin edo1 n cos 0idel/cos 0. (13)

The power per solid angle in the air relative to the

power per solid angle in medium ] is the power gain of the
interface transmitting into the air. Denoting this as Pl2,e

for a TE mode wave

P0 4n cos 01 Cos 0
U1

Pl2,e (n cos e 1+cos 6)2 sin odol n cos ldl0/cos 0

P0
sin 0 doldo,

11

4 cos 2 e
Pl2,e (n cos 01+cos n) (14)

Likewise for the TM case

4 cos 2 9

Pl2,m = (cos 0 +n cos )2 (15)

Equations (14) and (15) are identical to (L Ce) 2 and (L C )2

of equations (1) using a real refractive index. The inclusion

of complex n and 01 requires that the squares be replaced by

absolute values squared.

9



The pattern factor A of a dipole in the ground includes

/72", and sin 01 for vertical dipoles, cos ., for horizontal

dipoles, end fire, and a sine or cosine of 4 appears, see

equations (2) to (5).

Finally the attenuation in the ground may be obtained

approximately from the propagation factor in the ground and

the ray optical distance,

ik d/cos Ol
D' = e 1 (16)

where k = k0n is the complex wave number and 8j is a real
angle defined as the direction of a plane wave refracted by the

ground using the velocity in the ground, c/n'. An approximate
Snell's law with this assumption is

sin 0= n ' I sin 0, (17)

where n' is the real part of the complex refractive index of

the ground. The attenuations given by D of equations (1) and

by D' of equation (16) are nearly the same in spite of the

different forms. The attenuation exponent in equation (16)
becomes 1 percent greater than in equations (1) when the loss*
tangent is 0.6. A correct electromagnetic treatment of equation
(16) is given in section 9.8 of reference [5] as well as in [1].

E. GROUND WAVE

The ground wave (6 = 90*) is obtained from a Sommerfeld
type nf theory. Equations (1) are rYeplaced by [1],

E /E f = SeUe DAe/(-ik0R)

Em/Ef = SmUm DA /(-ik0R ) ,  (18)

where R is the horizontal distance to the field point, and

Se = 2/((Re n) x (n-l)),

S = 2 n 3/((Re n) x (n 2 -1)), (19)

Irovided a-s-o-' > 5.

10

--. . . . . . . .:



Ue = 1 - i k0 z Z0 cos c/Z1,

Um = 1 - i k0 z Z1 cos c/Z0, (20)

where z is the height of the field point above the intertace;

z is restricted to a few wavelengths. At greater heights the

space wave approximation, equations (1), are used. Equations (18)

state that the ground wave field decays at 1/R relative to the

reference field Ef which already decays as l/R, equation (6).

The ground wave is not important when the receiving station is

an aircraft. There is evidence of the ground wave in the field
trials described below. The receiving tower was 30.5 m horizon-

tally from the point of burial. The theoretical loss at low

angles is greater than that observed at low angles. For example,

the gain at 20 elevation angle should be approximately 12 dB less

than the gain at 100 elevation angle. The experiments show ap-

proximately a 6 dB difference. We therefore usually discuss

results at 100 elevation angle. Another evidence of the ground

wave occurs in figure II. With no ground wave the results for

the two reference monopoles would nearly coincide, as in figure

9. The ground wave, stronger at lower frequencies, shows clearly

as a difference in the fields at low angles.

F. CALCULATION OF THE FIELD FROM EQUATIONS (1)

A computer program was written to evaluate the field in

the air of a buried dipole, from equations (1). The important

factor from these equations for low-angle reception is LC which,

as we have seen in section 2D, arises from divergence and from

the Fresnel transmission. The power gain due to LC combined

with the broadside power gain of a dipole, 1.5, will be denoted

as the interface gain, I. However, the term interfaze loss will

also be used for I. Figure 2 shows the TM wave interface loss

in dB, at certain angles, versus e' of the earth. Specifically

the curves give the value in dB of

I =1.SJLCI 2 = 6 cos 2 0/(n'lcos 01+n cos 01l).

11


